Reaction of 2-Propynyl Phenylcarbamate with Benzaldehyde Oximes in the Presence of N -Chlorobenzenesulfonamide Sodium Salt

A. V. Velikorodov and V. B. Mochalin
Astrakhan State Pedagogical University, ul. Tatishcheva 20A, Astrakhan, 414056 Russia
e-mail: avelikorodov@mail.ru

Received March 13, 2001

Abstract

Propynyl phenylcarbamate reacts with substituted benzaldehyde oximes on heating in ethanol in the presence of N-chlorobenzenesulfonamide sodium salt, yielding the corresponding 3 -aryl-5-(phenylcarbamoyloxymethyl)isoxazoles.

We previously [1] reported on the synthesis of 3-aryl-5-(phenylcarbamoyloxymethyl)-4,5-dihydroisoxazoles by reactions of allyl phenylcarbamate with substituted benzaldehyde oximes in the presence of N-chlorobenzenesulfonamide sodium salt (Chlor-amine-B). The process is characterized by high regioselectivity. In continuation of these studies we now report on analogous reactions of 2-propynyl phenylcarbamate (I). It should be noted that alkynyl arylcarbamates and their derivatives are of great interest as intermediate products in the synthesis of various polyfunctional systems [2, 3]; some of them have found practical application [4].

Unlike internal olefins and acetylene derivatives, reactions of terminal alkenes and alkynes with nitrile oxides are known [5] to show some similar relations. As a rule, such reactons lead to formation of 3,5-disubstituted isomers [6], while from internal alkenes and alkynes both possible isomers are formed [7]. It is also known that 1 -phenylpropyne does not react
with nitrile oxides generated from arenehydroximoyl chlorides by the action of triethylamine [8].

The synthetic potential of 1,3-dipolar cycloaddition of acetylene derivatives to nitrile oxides generated in situ by the action of N-chlorobenzenesulfonamide sodium salt on benzaldehyde oximes, as well as general relations holding in this process, was explored very poorly. In order to fill this gap we examined the reaction of 2-propynyl phenylcarbamate (\mathbf{I}) with benzaldehyde oxime IIa and p-methoxy-, o-methoxy-, p-bromo-, m-nitro-, p-nitro-, and 3,4-methylenedioxybenzaldehyde oximes IIb-IIg in the presence of N-chlorobenzenesulfonamide sodium salt. The reactions were carried out by heating the reactants in boiling ethanol for 5 h .

The structure of the products was established on the basis of their IR, ${ }^{1} \mathrm{H}$ NMR, and mass spectra. According to the spectral data, cycloaddition of substituted benzonitrile oxides to 2-propynyl phenylcarbamate occurs with high regioselectivity, yielding

Scheme 1.

II, III, $R^{1}=R^{2}=R^{3}=H(\mathbf{a}) ; R^{1}=R^{2}=H, R^{3}=\mathrm{OMe}(\mathbf{b}) ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Br}(\mathbf{d}) ; \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}$,

$$
\mathrm{R}^{2}=\mathrm{NO}_{2}(\mathbf{e}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{NO}_{2}(\mathbf{f}) ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{OCH}_{2} \mathrm{O}(\mathbf{g})
$$

Yields, melting points, IR and ${ }^{1} \mathrm{H}$ NMR spectra, and elemental analyses of substituted isoxazoles IIIa-IIIg ${ }^{\mathrm{a}}$

Comp. no.	Yield, \%	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	IR spectrum, $v, \mathrm{~cm}^{-1}$			${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \operatorname{ppm}(J, \mathrm{~Hz})$			
IIIa	83	111	$\begin{gathered} 3305(\mathrm{NH}), 1740(\mathrm{C}=\mathrm{O}), 1600 \\ 1540\left(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}_{\text {arom }}\right) \end{gathered}$			$\begin{aligned} & 8.94 \text { br.s }(1 \mathrm{H}, \mathrm{NH}), 7.92 \mathrm{~m}\left(2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.35 \mathrm{t}(2 \mathrm{H}, \\ & \left.3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 7.4\right), 7.62-7.44 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.05 \mathrm{t}(1 \mathrm{H}, \\ & \left.4^{\prime \prime}-\mathrm{H}, 7.4\right), 7.00 \mathrm{~s}(1 \mathrm{H}, 4-\mathrm{H}), 5.34 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right) \end{aligned}$			
IIIb	89	107	$\begin{gathered} 3320(\mathrm{NH}), 1710(\mathrm{C}=\mathrm{O}), 1615 \\ 1560,1515\left(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}_{\text {arom }}\right) \end{gathered}$			8.80 br.s ($1 \mathrm{H}, \mathrm{NH}$), $7.83 \mathrm{~d}\left(2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 8.2\right), 7.58 \mathrm{~d}$ ($2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 8.9$), 7.32 t ($2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 8.9$), 7.04 m ($3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}$), $6.90 \mathrm{~s}(1 \mathrm{H}, 4-\mathrm{H}), 5.35 \mathrm{~s}$ $\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.87 \mathrm{~s}(3 \mathrm{H}, \mathrm{OMe})$			
IIIC	85	109	$\begin{gathered} 3300(\mathrm{NH}), 1745(\mathrm{C}=\mathrm{O}), 1610 \\ 1560,1510\left(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}_{\text {arom }}\right) \end{gathered}$			$\begin{aligned} & 8.80 \text { br.s }(1 \mathrm{H}, \mathrm{NH}), 7.85 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, 3 \mathrm{H}^{\prime}-\mathrm{H}, 1.5,7.4\right), \\ & 7.32 \mathrm{~m}\left(8 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.96 \mathrm{~s}(1 \mathrm{H}, 4-\mathrm{H}), 5.35 \mathrm{~s}(2 \mathrm{H}, \\ & \left.\mathrm{OCH}_{2}\right), 3.93 \mathrm{~s}(3 \mathrm{H}, \mathrm{OMe}) \end{aligned}$			
IIId	63	132	$\left\|\begin{array}{c} 3300(\mathrm{NH}), 1715(\mathrm{C}=\mathrm{O}), 1620 \\ 1570,1515\left(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}_{\text {arom }}\right) \end{array}\right\|$			8.81 br.s $(1 \mathrm{H}, \mathrm{NH}), 7.85 \mathrm{~d}\left(2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 8.2\right), 7.70 \mathrm{~d}$ ($2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 8.2$), $7.58 \mathrm{~d}\left(2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 7.4\right)$, $7.31 \mathrm{t}\left(2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 7.4\right), 7.09 \mathrm{~m}\left(1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 6.99 \mathrm{~s}$ $(1 \mathrm{H}, 4-\mathrm{H}), 5.35 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right)$			
IIIe	61	138	$\begin{gathered} 3365(\mathrm{NH}), 1720(\mathrm{C}=\mathrm{O}), 1585 \\ 1555,1535\left(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}_{\mathrm{arom}}\right) \end{gathered}$			$\begin{array}{\|l} 8.85 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH}), 8.70 \mathrm{~s}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.34 \mathrm{~m}(2 \mathrm{H}, \\ \left.4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.85 \mathrm{t}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}, 7.4\right), 7.58 \mathrm{~d}\left(2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H},\right. \\ \left.6^{\prime \prime}-\mathrm{H}, 7.0\right), 7.29 \mathrm{t}\left(2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 7.0\right), 7.19 \mathrm{~s}(1 \mathrm{H}, \\ 4-\mathrm{H}), 7.05 \mathrm{t}\left(1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 7.0\right), 5.40 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right) \end{array}$			
IIIf	57	147	$\begin{gathered} 3410(\mathrm{NH}), 1745(\mathrm{C}=\mathrm{O}), 1580 \\ 1555,1535\left(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}_{\text {arom }}\right) \end{gathered}$			8.82 br.s $(1 \mathrm{H}, \mathrm{NH}), 8.38 \mathrm{~d}\left(2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 7.4\right), 8.19 \mathrm{~d}$ ($2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 7.4$), $7.54 \mathrm{~d}\left(2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6{ }^{\prime \prime}-\mathrm{H}, 6.7\right)$, 7.30 t ($2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 6.7$), $7.14 \mathrm{~s}(1 \mathrm{H}, 4-\mathrm{H}), 7.05 \mathrm{t}$ $(1 \mathrm{H}, 4 "-\mathrm{H}, 6.7), 5.41 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right)$			
IIIg	85	120	$\begin{gathered} 3300(\mathrm{NH}), 1710(\mathrm{C}=\mathrm{O}), 1610 \\ 1560,1515\left(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}_{\text {arom }}\right) \end{gathered}$			8.78 br.s $(1 \mathrm{H}, \mathrm{NH}), 7.58 \mathrm{~d}\left(2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 7.4\right), 7.35 \mathrm{~m}$ $\left(4 \mathrm{H}, 2^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.00 \mathrm{~m}\left(2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $6.90 \mathrm{~s}(1 \mathrm{H}, 4-\mathrm{H}), 6.08 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.33 \mathrm{~s}(2 \mathrm{H}$, OCH_{2})			
	Found, \%				Formula		Calculated, \%		
no.	C		H	N			C	H	N
IIIa	69.05		5.07	9.79	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$		69.39	4.76	9.52
IIIb	66.26		5.15	8.53	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$		66.67	4.94	8.64
IIIc	66.41		4.79	8.71	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$		66.67	4.94	8.64
IIId	54.36		$\begin{aligned} & 3.84 \\ & 3.79 \end{aligned}$	7.65	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3}$		54.69	3.49	7.51
IIIe	59.99		3.79	12.03	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$		60.18	3.84	12.39
IIIf	60.09		$\begin{aligned} & 4.00 \\ & 4.20 \end{aligned}$	11.94	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5} \\ & \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \end{aligned}$		60.18	3.84	12.39
IIIg	64.06			8.11			63.91	4.14	8.28

${ }^{\text {a }}{ }^{1} \mathrm{H}$ NMR spectrum of 2-propynyl phenylcarbamate $(\mathbf{I}), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.69 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH}), 7.55 \mathrm{~d}(2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}, 7.4), 7.30 \mathrm{t}(2 \mathrm{H}$, $3-\mathrm{H}, 5-\mathrm{H}, 7.4), 7.02 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}, 7.4), 4.76 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{OCH}_{2}, 2\right), 2.99 \mathrm{t}(1 \mathrm{H}, \equiv \mathrm{CH}, 2)$.
the corresponding 3-aryl-5-(phenylcarbamoyloxymethyl)isoxazoles IIIa-IIIg (Scheme 1). Their yields, IR and ${ }^{1} \mathrm{H}$ NMR spectra, and elemental analyses are given in table.

The formation of only one isomer follows from the ${ }^{1}$ H NMR spectra of the products, which indicate that
the addition of nitrile oxide occurs at the $\mathrm{C} \equiv \mathrm{C}$ bond. Unlike initial 2-propynyl phenylcarbamate (I), the ${ }^{1} \mathrm{H}$ NMR spectra of products IIIa-IIIg lack triplet signal at $\delta 2.99 \mathrm{ppm}$ due to proton at the triple bond, but an olefinic proton signal appears as a singlet at $\delta 6.90-7.19 \mathrm{ppm}$. The band at $2140 \mathrm{~cm}^{-1}$, belonging
to stretching vibrations of the triple bond in I [9], disappears from the IR spectra of isoxazoles IIIa-IIIg.

Thus analysis of the ${ }^{1} \mathrm{H}$ NMR spectra of the products and structurally related compounds [6, 7] leads us to conclude that the cycloaddition of substituted benzonitrile oxides to 2-propynyl phenylcarbamate occurs regioselectively with formation of 3,5-disubstituted isoxazoles IIIa-IIIg.

The electron impact mass spectra of compounds IIIa-IIIg contain the molecular ion peaks whose relative intensity ranges from 12 to 29%. The presence of abundant ions with $\mathrm{m} / \mathrm{z} 175$ (IIIa), 205 (IIIb, IIIc), 254 (IIId), 220 (IIIe, IIIf), and 219 (IIIg), in addition to the ion with $m / z 119$, indicates that the fragmentation of III begins with elimination of phenyl isocyanate from the molecular ion. Also, the mass spectra of the products contain the following ions, $\mathrm{m} / \mathrm{z} 116$ (IIIa), 146 (IIIb, IIIc), 195 (IIId), 161 (IIIe, IIIf), and 160 (IIIg); taking into account the data of [7], the presence of the above ions suggest formation of 2-arylazirinium ion \mathbf{A} :

A
On the whole, the yields of isoxazoles IIIa-IIIg are smaller than the yields of their 4,5-dihydro analogs [1], which may be due to lower reactivity of the triple $\mathrm{C} \equiv \mathrm{C}$ bond as compared to double $\mathrm{C}=\mathrm{CH}_{2}$ bond. On the other hand, the yields of compounds IIIb, IIIc, and IIIg, which were obtained from benzonitrile oxides having electron-donor substituents, were considerably greater than those for benzonitrile oxides with electron-acceptor groups. These data are consistent with the polarization of the 1,3-dipole.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC-200 spectrometer (200.13 MHz) using acetone- d_{6} as solvent and TMS as internal reference. The mass spectra (70 eV) were obtained on a Kratos MS-30 instrument. The IR spectra were measured on an IKS29 spectrometer in the range from 4000 to $400 \mathrm{~cm}^{-1}$; samples were dispersed in mineral oil. The purity of the products was checked by TLC on Silufol UV-254 plates.

2-Propynyl phenylcarbamate (I) was synthesized following the procedure reported in [10], by reaction of freshly distilled phenyl isocyanate with a slight excess of 2-propynyl alcohol in carbon tetrachloride. The product was purified by recrystallization from hexane, $\mathrm{mp} 64^{\circ} \mathrm{C}$.

3-Aryl-5-(phenylcarbamoyloxymethyl)isoxazoles IIIa-IIIg. A mixture of 1.35 mmol of 2-propynyl phenylcarbamate (I), 1.35 mmol of benzaldehyde oxime IIa-IIg, and 1.35 mmol of N -chlorobenzenesulfonamide sodium salt trihydrate in 25 ml of anhydrous ethanol was refluxed for 5 h . The precipitate was filtered off, the filtrate was evaporated under reduced pressure, and the residue was treated with methylene chloride ($2 \times 25 \mathrm{ml}$). The extract was washed with a 1 N aqueous solution of sodium hydroxide ($2 \times 25 \mathrm{ml}$) and water ($2 \times 30 \mathrm{ml}$) and dried over magnesium sulfate. The solvent was removed to obtain crystalline products IIIa-IIIg which were purified by recrystallization from a $1: 1$ diethyl etherhexane mixture.

REFERENCES

1. Velikorodov, A.V. and Mochalin, V.B., Russ. J. Org. Chem., 2001, vol. 37, no. 1, pp. 83-86.
2. Makhsumov, A.G. and Atakhodzhaeva, M.A., Khim.Farm. Zh.. 1991, vol. 25, no. 6, pp. 47-48.
3. Shapiro, S.L., Bandurco, V., and Freedman, L., J. Org. Chem., 1961, vol. 26, no. 12, pp. 3710-3712.
4. Zhantemirova, U.F., Cand. Sci. (Chem.) Dissertation, Alma-Ata, 1973.
5. Gilchrist, T.L., Heterocyclic Chemistry, Harlow, Essex: Longman Scientific \& Technical, 1992, 2nd ed.
6. Kondo, Y., Uchiyama, D., Sakamoto, T., and Yamanaka, H., Tetrahedron Lett., 1989, vol. 30, no. 32, pp. 4249-4250.
7. Meazza, G., Capuzzi, L., and Piccardi, P., Synthesis, 1989, no. 4, pp. 331-334.
8. Quilico, A., Experientia, 1970, vol. 26, no. 1, pp. 69-72.
9. Brown, D.W., Floyd, A.J., and Sainsbury, M., Organic Spectroscopy, Chichester: Wiley, 1988.
10. Vigne, B., Archelas, A., Fourneron, J.D., and Furstoss, R., Tetrahedron, 1986, vol. 42, no. 9, pp. 24512456.
